
Traversing Large Compressed Graphs on GPUs
Prasun Gera∗

Cerebras Systems
prasun@cerebras.net

Hyesoon Kim
Georgia Tech

hyesoon@cc.gatech.edu

Abstract—GPUs can be used effectively for accelerating graph
analytics, provided the datasets fit in GPU memory. This is often
not the case for large real-world datasets such as social, web,
or biological graphs. We propose a graph compression format
for static unweighted graphs based on Elias-Fano encoding that
is amenable to run-time decompression on massively parallel
architectures such as GPUs. We show that we can compress a
variety of large graphs by a factor of 1.55x over the commonly
used compressed sparse row (CSR) representation. The scheme is
particularly beneficial for cases where conventional CSR based
approaches do not work at all due to memory capacity con-
straints, or incur a significant penalty for out-of-core processing.
We implement GPU accelerated breadth first search for this
graph representation and show that the runtime performance for
in-memory compressed graphs is 3.8x-6.5x better than out-of-core
implementations for CSR graphs. Further, our implementation is
also 1.45x-2x faster than the current state of the art in GPU based
compressed graph traversals while maintaining a competitive
compression ratio. We also extend our work to other analytics
applications such as single source shortest paths and PageRank.
Finally, we explore the interplay between graph reordering,
graph compression, and performance.

Index Terms—GPU, Graph Compression, Graph Analytics

I. INTRODUCTION

Graphics Processing Units (GPUs) are a class of processors
characterised by massive parallelism and a memory hierarchy
that offers high performance but is limited in capacity. General
purpose computing on GPUs is a popular form of acceleration
for workloads such as machine learning, scientific computing,
and data analytics. In this work, we focus on applications that
work with large sparse graphs such as those arising from web,
social, and biological networks. These graphs can have billions
of edges and range up to tens or hundreds of gigabytes in size
even in a sparse representation. However, GPU memory capac-
ity is limited to a few gigabytes in the common case. A possi-
ble solution for large graphs is to distribute them over multiple
GPUs and/or CPUs [1]–[3]. There is also recent work on using
out-of-core processing [4]–[6], where the data is streamed
from the host over the interconnect. These solutions come
with trade-offs, namely higher implementation complexity and
hardware costs, and bottlenecks due to the slow interconnect.
In this work, we propose a complementary solution, namely
graph compression, so that one can accommodate larger graphs
in GPU memory. The application works with compressed
data and uses constant local memory to decompress only the
needed portions at runtime. We implement breadth first search
(BFS), single source shortest paths (SSSP), and PageRank for

∗ Contributed while at Georgia Tech

compressed graphs in this work. The graph traversal pattern
captures many fundamental challenges that arise in graph
analytics on GPUs and has broad utility. Other analytics such
as betweenness centrality and connected components can also
be implemented using a similar approach.

While graph compression has been studied extensively in
general [7], prior work has mostly focused on CPUs. This is
mainly because the decompression stage is often sequential,
irregular, and branch-intensive. Compression schemes reduce
the storage requirements of repeating or predictable patterns,
and one needs to follow dependent chains during decom-
pression to recover the values. These characteristics do not
map well to the GPU architecture, in which it is desirable
that threads do the same type and amount of work without
diverging too much. Skews in the degree distribution make the
mapping of work to threads in the single instruction multiple
threads (SIMT) model difficult. Compression adds another
layer of imbalance as blocks of compressed data of the same
size do not represent the same number of edges in the graph.
Despite these challenges, graph compression is attractive since
a GPU’s internal memory bandwidth is an order of magnitude
higher than the interconnect’s bandwidth. In typical scenarios,
graph analytics kernels are memory bound and the compute
resources are under-utilised, which presents an opportunity to
trade off compute resources for memory capacity. Our goal is
to decompress the graphs at runtime as a part of the analytics
kernel without severely affecting the performance. To that end,
this paper makes the following contributions:

• We present a compressed graph representation, Elias-
Fano graph (EFG) format, based on the Elias-Fano encod-
ing scheme. Our contribution here is the GPU implemen-
tation1 for run-time decompression in graph analytics.
We implement BFS, SSSP, and PageRank for compressed
graphs.

• The key challenge in efficient run-time decompression
on GPUs is maintaining a high degree of parallelism
and load balance between threads. We achieve this by
decomposing the problem into smaller high-performance
primitives such as parallel scans and searches.

• The proposal satisfies several desirable criteria such as
high decompression throughput, competitive compression
ratio, a priori determination of compression ratio, and
independence from the graph’s ordering.

1https://github.com/pgera/efg

https://github.com/pgera/efg

0

5

10

15

20

25

30

0

5

10

15

20

25

G
ra

p
h
 S

iz
e

(G
iB

)

G
T

E
P

S

BFS Performance

GTEPS Graph Size in GiB (CSR)

1 2 3

PCI-e roofline

Fig. 1. BFS performance measured in billions of Traversed Edges per Second
(GTEPS) on a Titan Xp GPU with 12 GiB memory. Regions: (1) Graphs that
fit in memory. (2) Graphs that exceed memory, but would fit after compression.
(3) Graphs that will exceed memory even after compression.

TABLE I
GPU BANDWIDTH CHARACTERISTICS

GPU Mem. HtoD Link DtoD BW HtoD BW

Titan Xp 12 GiB PCI-e 3.0 417.4 GB/s 12.1 GB/s

• EFG achieves an average compression ratio of 1.55x over
the compressed sparse row (CSR) format, and breadth
first traversals show a speedup of 3.8x - 6.5x over the
equivalent out-of-core CSR implementation.

• EFG achieves a speed-up of 1.45x - 2x over CGR [8], the
current state of the art in GPU based compressed graph
traversals. Our solution also continues to work in the out
of core regime, whereas CGR does not.

• EFG is tolerant to pathological graph orderings. While
preprocessing is not needed for EFG to achieve a good
compression ratio, graph reordering can improve the
decompression performance further.

II. MOTIVATION

GPUs have been used successfully for accelerating dense
and sparse matrix/graph applications. Much of the prior
work [1], [9] in the area covers various optimisation for
improving load-balance, utilisation, and the memory accesses
in graph analytics kernels. These solutions work well when
the graphs fit in GPU memory. However, real-world graphs
can have billions of edges, which exceeds a typical GPU’s
memory capacity. When the graphs exceed memory capacity,
there are different approaches [4]–[6] such as unified virtual
memory (UVM) and zero-copy memory transfers for out-
of-core processing. In the zero-copy approach described in
EMOGI [4], the graph resides in CPU memory, and data is
streamed at cacheline granularity. We adopt this approach in
the following experiment.

In Fig. 1, we plot the performance of breath first search
(BFS) in billions of traversed edges per second (GTEPS)
on a Titan Xp GPU with 12 GiB memory. The graphs are
represented in the compressed sparse row (CSR) format and
arranged in increasing order of their sizes. We use NVIDIA’s
high performance graph analytics framework, cugraph [10], for

this experiment with light modifications for zero-copy memory
transfers. We see that the performance drops sharply when the
graphs exceed the GPU’s memory capacity. This is attributed
to the fact that the GPU’s internal memory bandwidth is
∼ 35x higher than the host-to-device interconnect’s bandwidth
(Table I). We have marked three regions in Fig. 1:

• In the first region, CSR encoded graphs fit in memory.
Here, cugraph’s performance is quite good, and we do not
need compression unless additional space (e.g., working
data or outputs) is needed for the analytics kernel.

• The second region corresponds to graphs that exceed
memory capacity. This is the region that stands to benefit
the most from graph compression. Graphs in this region
would fit in memory after compression and take advan-
tage of the higher internal memory bandwidth.

• The last region is for massive graphs that would not fit
in memory even after compression. However, due to the
reduction in data transferred over the slow interconnect,
compression is still useful in this region.

With 32-bit types, we get a theoretical peak of 3.03 GTEPS
for the out-of-memory region as the interconnect’s bandwidth
is 12.11 GB/s. The primary motivation for graph compression
is to overcome this barrier imposed by the interconnect.

III. BACKGROUND

A. GPU Architecture

The NVIDIA GPU architecture consists of a number stream-
ing multiprocessors (SMs). All the SMs have access to a
common pool of global memory (e.g., 12 GiB for Titan Xp),
and each SM has additional local fast memory known as
shared memory. Each SM has a number of SIMD lanes, and
a collection of threads, known as a warp, execute in lock-
step fashion. The global grid of threads is logically divided
into thread blocks, where threads within a block have access
to shared memory and synchronisation primitives. The GPU
connects to the host via an interconnect such as PCI-e.

B. Graph Analytics on a GPU

Algorithm 1 BFS Level Advance
1: for all u ∈ current frontier in parallel do
2: for all (u, v) ∈ E in parallel do
3: if (visited[v] == false) then
4: old = atomic or(&visited[v], true)
5: if (old == false) then
6: add to next frontier(v)

A number of graph analytics applications use the idiom of
frontier expansion, filtering, and compaction. In Alg. 1, we
show the basic structure of expanding a frontier in breadth
first search (BFS). Given a frontier of active vertices, the
GPU threads explore their neighbours in parallel and add
unvisited vertices to the next frontier. The complexity of
the GPU implementation is abstracted in the first two lines
which are responsible for visiting the edges in parallel. Since

the degree distribution of nodes can be skewed, the primary
challenge is mapping this expansion in a load balanced way
onto the GPU’s threads, which we cover in more detail in
Sec. VI. This pattern also extends to applications such as single
source shortest path (SSSP), PageRank (PR), betweenness
centrality, and others. Traversals on compressed graphs involve
decompressing the edges. Once we have the destination of an
edge, the rest of the algorithm is similar to the uncompressed
case. We use a collection of large web, social, biological, and
synthetic graphs [11]–[16]. Directed graphs are denoted with
(d) whereas undirected ones are noted with (u). Symmetrised
versions of directed graphs are marked with a sym suffix.

C. Scans and Searches

We make extensive use of two operations in this work:
i) parallel scans, and ii) binary searches. For a list of n
elements [a0, a1,..., an−1], an identity element I , and a binary
associative operator ⊕, the exclusive scan returns the array [I ,
(I⊕a0), (I⊕a0⊕a1),..., (I⊕a0⊕a1...⊕an−1)]. This can be
computed in parallel with O(n) work and O(log(n)) depth. A
variation of the regular scan is a segmented scan [17] where
an additional boolean array is used to mark segments, and
the goal is to compute the scans within segments. The binary
searches we use in this work are parallel bounded searches,
where each search finds the index of the largest value less
than or equal to the search value. When combined, scans and
searches serve an important role in load-balancing.

D. Compressed Sparse Row (CSR) Format

The compressed sparse row (CSR) format is a popular
representation for static graphs that stores only the non-zero
entries in an adjacency matrix. In the CSR format, a graph
G = (V,E) is stored as two arrays: (i) vlist of length
|V |+1 that consists of row offsets, and (ii) elist of length
|E| that consists of column indices. For a given vertex id v, its
neighbours can be accessed in the range elist[vlist[v]
: vlist[v + 1]]2. Additional arrays can be used for
storing properties such as edge weights. In Figs. 3(a)-(b), we
show a sample graph and its CSR representation. The majority
of prior work on GPUs and graph analytics uses the CSR
representation, and it serves as a baseline for comparison here.

IV. ELIAS-FANO ENCODING

Our graph compression format is based on Elias-Fano [18]
(EF) encoding for monotone sequences which dates back to
1970s. More recently, Vigna [19] described this encoding
for compressing inverted indices, and he calls them quasi-
succinct indices. Succinctness here refers to the classification
of data structures that take close to the information theoretic
lower bound in storage while still supporting efficient queries.
We describe the main aspects of the encoding here and
refer the reader to Vigna [19] for more details. Consider a
monotonically increasing sequence of n > 0 natural numbers
0 ≤ x0 ≤ x1... ≤ xn−1 ≤ u where u > 0 is any upper bound
on the last value. In standard binary encoding, such a sequence

2[start:stop] refers to the right open interval [start, stop)

1 3 4 12 15 20 23 32
0000 01 0000 11 0001 00 0011 00 0011 11 0101 00 0101 11 1000 00

0 0 1 3 3 5 5 8

1 1 01 001 1 001 1 0001

0-0=0 5-5 = 0 8-5 = 3

01 11 00 00 11 00 11 00

(b) Lower-bits array

(a) Upper-bits array

5-3 = 2….

Fig. 2. A monotone sequence {1,3,...,32} coded with Elias-Fano encoding.
For n = 8 and an upper bound u = 32, we need blog 32/8c = 2 lower bits.
Successive gaps between the upper bits are encoded in unary with 1 as the
stop-bit to form the upper-bits array. The lower bits are concatenated directly.

takes n dlog(u+ 1)e bits of storage. The EF representation
encodes it as follows:

• The lower l = max{0, blog u/nc} bits of each xi are
stored contiguously in the lower-bits array.

• The remaining upper bits of each xi are stored in the
upper-bits array as unary coded gaps.

See Fig. 2 for an example. The lower-bits array stores the
2 lower bits from each element. The remaining upper-bits
are treated as integers (e.g., 1000b → 8), and successive
differences between them are encoded in unary (e.g., 8 - 5 = 3
which is 000) with a stop bit (1) and concatenated to form the
upper-bits array. The interesting property of this representation
is that it takes at most n(2+dlog u/ne) bits in total to represent
the sequence, which is quite close to the lower bound for
monotone sequences [19]. In Fig. 2, the binary representation
needs 6∗ 8 = 48 bits, whereas the EF representation needs 32
bits (16 each for the lower and upper halves).

A. Decoding

To decode xi, we need to recover and combine the lower
and upper bits. The lower part can be readily recovered with a
random access in the lower-bits array. The upper part of xi can
be recovered with a select1(i)− i operation on the upper-bits
array, where select1(i) is defined as the operation that returns
the position of the ith (0-indexed) set bit from the start posi-
tion. For example, to recover the upper bits of x4, we compute
select1(4)−4 = 7−4 = 3 ≡ 11b, since the position of the 4th

(0-indexed) set bit is 7. The lower bits of x4 are lower[4]
= 11b, and thus upper|lower is 1111b = 15, which is
indeed x4. The select operation is a foundational piece for
information-retrieval systems. Vigna [19] describes forward
pointers as a straightforward way to get on-average constant
time select operations. Forward pointers store precomputed
values of select1 at multiples of some chosen quantum size.
Now, performing select1(i) reduces to a select starting at the
nearest forward pointer boundary. We discuss forward pointers
in more detail in Sec. VI-C. Techniques such as broadword
programming [20] or special hardware instructions such as
Intel’s bit manipulation instructions (BMI) can be used to

0 2 3 4 6 9 9 9 11 12 12 14

1 2 4 3 5 6 2 3 7 8 9 1 0 3

0

1
4

7
8 9

2

3

5

6

10

vlist

elist

0 2 3 4 6 9 9 9 11 12 12 14

0 2 1 1 1 0 0 2 0 0 0

0 1 3 5 7 9 9 9 11 12 12 13

00001010 00000000 00000010 00000001 00000010 00000001 00010100 00000110 00100110 00000100 00001100 00000010 00010001

vlist

num_lower_bits

offsets

data

(a) Sample Graph (b) CSR Representation

(c) EFG Representation

0 1 2 3 4 5 6 7 8 9 10 11 indices

u l u l u l u l u l u u u

0 1 2 3 4 5 6 7 8 9 10 11 indices

select1(2) = 5

x0 x1 x2

x2 = upper | lower
upper = select1(2) – 2

= 3 (11)
lower = 1
x2 = 111 (7)

Fig. 3. (a) A sample graph, (b) its CSR representation, and (c) its EFG representation. Node 4 and its neighbours are highlighted with yellow and green
respectively. u and l denote upper and lower bits, respectively. This is a small example for illustration which does not benefit from compression.

accelerate select operations. This works for CPU applications
since an application can replace its memory accesses with a
call to the decoder, and the rest of the application remains
unchanged. Our problem is different in two important ways:

1) Multiple Values: In the GPU setting, we do not decode
a single value in a list. Rather, a set of threads needs to
decode a set of values. If each thread were to call select
independently, that would be wasteful since select1(i+
1) would not use the work done during select1(i).

2) Multiple Lists: The values are not from the same list.
We have a set of nodes whose neighbours we wish to
explore. Each node’s neighbour list is compressed with
EF. The goal is to map this expansion of multiple non-
contiguous compressed lists of different sizes in a load
balanced way on the GPU’s grid.

V. ELIAS-FANO GRAPH (EFG) FORMAT

We propose the Elias-Fano Graph (EFG) format as a GPU
friendly compressed graph representation based on the EF
encoding scheme. Each neighbour list is individually encoded
with EF, and the overall graph is laid out in a format that
is similar to CSR. The only requirement for encoding the
neighbour lists with EF is that the original sequences should
be in sorted order.

In Fig. 3(c), we show the sample graph encoded in the EFG
format. The representation consists of four arrays: vlist,
num_lower_bits, offsets, and data. The first three
arrays are indexed with the vertex id. The vlist array is
similar to the one used in CSR. This array gives us constant
time access to the degree of a node (i.e., degi = vlist[i+1]−
vlist[i]), which is the number of elements in the compressed
neighbour list. Unlike CSR, this array is not used directly for
indexing the data. Instead, a separate offsets array stores
the exclusive prefix sum of raw offsets into the compressed
data array. The num_lower_bits array stores the number
of lower bits used while encoding the vertex’s neighbour list
with EF. We use the folly [21] library for encoding the lists.
The data is stored as forward pointers, lower bits,

upper bits, in that order, in our implementation, and each
section is byte aligned. There are no forward pointers in this
example. To decode the neighbours of a node, we first recover
its degree, the number of lower bits, and offsets in the data
array. For example, node 4 in Fig. 3 has a degree of 3, uses 1
lower bit per value, and its raw data is stored in 2 bytes. The
three neighbours of node 4 are {2,3,7}, and the list is encoded
the same way as the previous example in Fig. 2. To recover x2

(i.e., the third element), we compute select1(2)−2 = 5−2 =
3 ≡ 11b for the upper half and 1b for the lower half for a total
of 111b = 7, which is indeed the third neighbour of node 43.

The EFG format compresses the structure of the graph.
A graph may have additional data such as edge weights,
which can be arbitrary floating point values. Compressing such
auxiliary data is beyond the scope of this work.

VI. COMPRESSED GRAPH TRAVERSAL

We describe our implementation for GPU based traversal for
EFG graphs in stages. We look at the top-down decomposition
of the problem first since it shares similarities with a typical
CSR based implementation. This is followed by our solution
for list decompression on GPUs. Finally, we discuss extensions
to other applications such as SSSP and PageRank.

A. Load Balanced Partitioning

The main operation of interest in a GPU based traversal is
the load-balanced expansion of the frontier of vertices (first
two lines of Alg. 1). Consider the example in Fig. 4. The
frontier consists of four vertices whose out-degrees are {2, 3,
2, 1} for a total of 8 edges that emanate from this frontier. We
need to visit these 8 edges to recover the destination vertices
and eventually check a property such as the visited flag or a
distance value. In an ideal mapping, 8 threads would explore
the 8 edges. To achieve such a mapping [1], the following
steps are taken: First, we compute the exclusive prefix sum

3In Fig. 3, since we show the actual layout of bits in memory, the LSB is
at the right end. Hence, select goes from right to left. Elsewhere in the paper,
we use the prior convention of scanning bits from left to right for readability.

v0 v1 v2 v3

2 3 2 1

0 2 5 7

0 0 1 1 1 2 2 3

front_idx = binsearch_maxle(deg_ex_sum, tid)

t0 t1 t2 t3 t4 t5 t6 t7

frontier

frontier degrees

frontier degrees exclusive sum

thread id

0 1 0 1 2 0 1 0

edge_id = tid – deg_ex_sum[front_idx]

front_idx

edge_id

Fig. 4. Mapping of edges to threads in frontier expansion.
binsearch_maxle returns the index of the largest value less than
or equal to the search value.

(Sec. III-C) of the degrees of these vertices. Next, each thread
does a binary search in the exclusive sum array to find the
index of the largest value less than or equal to the thread id.
The returned index is an index in the frontier array, which is
the vertex whose edge this thread needs to visit. For example,
thread t4 searches for 4 in the exclusive sum array, which
returns the index 1 since 2 is the largest value ≤ 4. Hence,
thread t4 needs to visit a neighbour of v1. Finally, to know
which edge in particular to visit, the thread subtracts the
exclusive sum from the thread id. Thread t4 needs to visit
4 - 2 = 2 (i.e., 3rd edge) of node v1. Our implementation
uses the thrust library’s vectorised search functions for this
phase. Notice that once a thread knows which edge it needs
to visit, it can readily recover it in constant time in the CSR
representation. Recall that the destination of the nth edge
of the ith vertex in CSR is at elist[vlist[i] + n].
This does not hold true in the EFG representation. We use
this partitioning at the top level so that each thread block
is responsible for roughly equal number of edges. However,
within a thread block, we need a new implementation for
decompressing the data.

In summary, the top level decomposition partitions the edges
equally between thread blocks. The remainder of the problem
can be formulated as that of decompressing multiple neighbour
lists, including partial lists, within a thread block. We describe
the solution as a progressive generalisation of specific cases.

B. Decompressing A Single List

Consider the specific case of decompressing a single list
within a thread block. This is, in fact, sufficient for imple-
menting the traversal, albeit in an inefficient way due to skews
in the degree distribution. Instead of a load-balanced split of
edges, as described earlier, we can assign a thread block to
each node in the frontier, and the thread block decompresses
that node’s edge list. Recall from Sec. IV-A that we are mainly
interested in computing select1(i)− i for each of the set bits
in the upper-bits array, where select1(i) returns the position
of the ith set bit in a bitstream. Since the lower-bits array
can be accessed in constant time, we focus only on the upper-
bits array. The pseudo-code for decompressing a single list is
shown in Alg. 2 with a corresponding example in Fig. 5.

In this example, a thread block of 4 threads (DIMX) col-
lectively decompresses a list by computing select1(i)− i for

10101000 01010001 01000001 00101000

3 3 2 2

0 3 6 8

10101000 01010001 01000001 00101000…Upper

0 0 0 1

(s)popc exclusive sum

pop count

Values

Iteration 0

10101000 10101000 10101000 01010001

select1(val_id) = b_id*8 + local

local = select1_byte(byte, s_id)

byte = bytes[b_id]

s_id = val_id – popc_ex_sum[b_id]

b_id = bsearch_maxle(popc_ex_sum, val_id)

0 1 2 0

0 2 4 1

0 2 4 9

(s)bytes

Bytes

Iteration 0

0 1 2 6

Upper half = select1(val_id)– val_id

1

t0 t1 t2 t3

2

3

4

5

6

7

8

9

Fig. 5. Decompressing a single list within a thread block. The threads
collectively compute select1(i) − i. Shared data structure are marked with
(s). val_id is the same as thread_id in the first iteration.

each set bit. The upper bits array (Upper) resides in global
memory. Each thread 1 loads a byte to a shared bytes array.
Shared data resides in a fast user managed cache accessible by
all threads within the block. Next, each thread 2 computes
a population count of the set bits in its respective local byte
with the popcount instruction. The counts are {3, 3, 2, 2}
here. The number of set bits in a byte is also the number
of values that the byte will eventually produce. Since these
values are not uniform, we need a load balanced split similar
to the approach described earlier for splitting edges based on
unequal degrees. Hence, the threads collectively compute the
3 exclusive prefix sum (Sec. III-C) over their respective pop-

counts. The results are stored in a shared array. The exclusive
scan also returns the total pop-count (10 here), which is the
total number of values to be decoded. This starts the inner
loop where each thread decodes one value in each iteration.
We show the first iteration in the example.

In the first iteration, the index of the value to be decoded is
the same as the thread id (line 14, Alg. 2). Thread i needs to
find the position of the ith set bit. Since we have the exclusive
prefix sum of pop-counts, each thread does a 4 binary search
in the array to narrow the search to a 5 target byte. In the
example, we see that the first three threads get the first byte
whereas the fourth thread gets the second byte. The difference
between the search parameter and the exclusive sum gives the
new search parameter for 6 selecting a bit within a byte,
called select1 byte hereafter (e.g., thread t2 finds the position
of the 2nd set bit in 10101000). A byte has 256 possible
values, and for each value, there can be at most 8 positions.
Hence, select1 byte(i) is implemented with a 7 lookup table
of 2 KiB in constant memory. The number of preceding bits in
the list is 8 added to the result of select1 byte to produce the

Algorithm 2 decompress single list (upper, n bytes)
1: shared s exsum[DIMX];
2: shared s bytes[DIMX];
3: prev vals = 0;
4: b iters = ceil(n bytes / DIMX);
5: for (i=0; i <b iters; i++) do
6: byte id = i * DIMX + thread id;
7: byte = (byte id <n bytes) ? upper[byte id] : 0;
8: s bytes[tid] = byte; 1
9: popc = popc(byte); 2

10: total vals = do ex sum(popc, s exsum); 3
11: CTA sync();
12: val iters = ceil(total vals / DIMX);
13: for (j = 0 ; j <val iters; j++) do
14: val id = j * DIMX + thread id;
15: if (val id <total vals) then
16: tb id = bsearch max le(s exsum, val id); 4
17: target = s bytes[tb id]; 5
18: s id = val id - s exsum[tb id]; 6
19: select result = select1 byte(target, s id); 7
20: bits before me = (i*DIMX + t byte id)*8;
21: select result += bits before me; 8
22: global val id = prev vals + val id;
23: upper half = select result - global val id; 9
24: lower half = get lower half (global val id);
25: decoded val = combine(upper half, lower half);
26: // Use value in analytics
27: prev vals += total vals;
28: CTA sync();

global select1 value, and 9 subtracting the index of the value
from it gives the upper-half of the decompressed value. This
is combined with the lower half and used in the application.

C. Decompressing A Partial List

Assigning a list to a block has obvious limitations since
some lists can be much longer than others, particularly in real-
world graphs with a power-law degree distribution. The next
logical step is to split long lists across thread blocks in order
to avoid over-subscription of thread blocks. Since a list can
span multiple blocks, the problem can be formulated as that
of decoding values in some range [a, b] within a list, where
0 ≤ a ≤ b < n for a list with n elements. This is achieved with
the use of forward pointers. The conventions herein are based
on the folly [21] library. For a list of size n and a quantum
parameter k > 0, we store bn/kc forward pointers that enable
fast select1(i) operations for i = {k−1, 2k−1, ..., bn/kck−
1}. For instance, k = 8 stores values for select1(8− 1 = 7),
select1(15), and so on. The pointers actually store select1(i)−
i rather than select1(i) since it takes fewer bits, and i can be
added later if needed. Consider the example in Fig. 6, where
forward pointers are stored for k = 8, and a thread block of 4
threads needs to decode values [x12, x19] in the list. The closest
preceding pointer for x12 is at forward[b(12 + 1)/8c − 1],
which is the first pointer, and it corresponds to x7. We get a

11101101 10011100 10101100 00000100 11010010 10000101 00100100 1…

4 17 30 …

00011111

00011100 10101100 00000100 11010010 10000101 00100100

&
mask

Upper

Forward Pointers (k=8)

select1(7) select1(15) select1(23)

0 8 16 24 32 48 5640

t0 t1 t2 t3 t0 t1

Fig. 6. Decompressing a partial list within a thread block. Forward pointers
store the value of select1(i)− i at regular intervals (k = 8 here). The thread
block loads the bytes between two boundary pointers.

bit position of 4 + 7 = 11, as shown in the figure. Similarly,
the last pointer of interest corresponds to x23, which gives
a position of 53. Thus, this thread block only needs to scan
between bits 11 and 53.

Splitting large lists across blocks helps with over-
subscription, but not with under-subscription since small lists
are still assigned to individual blocks. The last missing piece
in the general solution is the ability to decode multiple lists
within a block, which we describe next.

D. Decompressing Multiple Lists

The load-balanced partitioning described in Sec. VI-A as-
signs an equal number of edges to different thread blocks.
Hence, each thread block is responsible for decoding a number
of lists. The single-list solution in Alg. 2 changes in a few ways
to account for multiple lists. First, we now need an additional
outer loop for lists. That is, we need three levels of nesting that
go from lists to bytes to decoded values, and the bytes come
from multiple lists instead of a single list. Second, notice that
at the innermost level, a thread’s view is extremely local. Each
thread needs to compute select1(i)−i for some i, and in order
to go from select1 byte on a local byte to the global decoded
value, it needs two pieces of information: i) What the position
of the byte in the list is, and ii) What the global index (i) of
the value in the list is. This requires a segmented prefix sum
(Sec. III-C), where the segments represent list boundaries. We
look at an example next to explain this.

In Fig. 7, a thread block of 6 threads decompresses multiple
lists. Steps marked with ? are different from the single-list
case. Like the single-list case, each thread needs to load a
byte to the shared bytes array. However, since the bytes now
come from multiple non-contiguous lists of different sizes,
we use the familiar idiom of a prefix sum over the number of
bytes per list followed by a binary search to map the bytes to
threads. Like the single-list case, these bytes would produce a
number of values, and we need an exclusive prefix sum over
the local popcounts for use in the innermost loop. In addition,
we need to mark the list boundaries. Threads that start a
new list mark a flag in the is_list_start array. For e.g.,
thread t2 starts list1, and marks its bit as 1. This flag array is
used in conjunction with the popcounts to create an additional
segmented prefix sum array, where each prefix sum runs only

list0 list1 list2

10010100 00100000 01000000 10010010 11001010 01000000

t0 t1 t2 t3 t4 t5

(s)bytes

3 1 1 3 4 1

pop count

0 3 4 5 8 12

(s)popc_ex_sum

0 3 0 0 3 7

1 0 1 1 0 0

is_list_start

(s)segment_popc_ex_sum

0 1 0 0 1 2

(s)seg_bytes_before_me

b_id = bsearch_maxle(popc_ex_sum, val_id)

0 0 0 1 2 3

10010100 10010100 10010100 00100000 01000000 10010010

byte = bytes[b_id]

List

Iteration 0
10010100 00100000 01000000 10010010 11001010 01000000

Bytes

Iteration 0

s_id = val_id – popc_ex_sum[b_id]

0 1 2 0 0 0

local = select1_byte(byte, s_id)

0 3 5 2 1 0

select1 = local + seg_bytes_before_me[b_id]*8

0 3 5 10 1 0

0 1 2 3 0 0

i = s_id + segment_popc_ex_sum[b_id]

0 2 3 7 1 0

Values

Iteration 0

Upper Half = select1 - i

t0 t1 t2 t3 t4 t5

Fig. 7. Decompressing multiple lists within a thread block. Steps marked
with ? are different from the single-list case.

within the list. While thread t4’s block-wide exclusive sum
is 8, its exclusive sum within the list is 3. Similarly, the
seg_bytes_before_me array keeps track of the number
of preceding bytes within the list. In the innermost loop for
decoding the values, the threads identify their target bytes by
searching the block-wide exclusive array like the single-list
case. After computing the local select1 byte(i) value, each
thread looks up the number of preceding bits within the list
and adds it to get the global select1 value. For eg., since t3’s
target byte id is 1, which has one preceding byte in the list,
8 is added to its local select value of 2 for a total of 10. On
the other hand, t4’s target byte is byte 2, which is the start
of a list. Hence, nothing is added to its local select value.
Similarly, the segmented exclusive sum of the target byte is
added to the id within the byte to get the global id for the
value. Finally, the upper half is computed as select1(i) − i
and combined with the lower half to recover the value. The
multi-list solution combined with partial lists gives us a fully
general solution.

E. Partially Sorting the Frontier

In a parallel BFS, nodes are added to the frontier in arbitrary
order. Hence, the lists that a thread block decompresses during
frontier expansion may be scattered across memory. One
way to improve the locality of accesses is to sort the nodes
in a frontier, so that thread blocks touch non-overlapping
regions of memory and threads within a block touch increasing
memory addresses. However, sorting the frontier at each level
is expensive. Fortunately, we do not need an exact sort since
this is an optimisation and does not affect correctness. We use
the CUB [22] library’s GPU implementation for radix-sort to
sort only the higher order bits. We sort 65% of the bits (i.e.,
we pretend as though the lower 35% bits do not exist) while
sorting the frontier. We see an average improvement of 9%
(max 33%) in runtime from this optimisation.

F. SSSP and PageRank

The general traversal pattern extends to many applications,
and we extend it to single source shortest paths (SSSP) and
PageRank here. The SSSP implementation is similar to BFS
except that instead of a boolean visited property, we need to
relax a floating point distance value. We mark the relaxed
nodes atomically in a bitmap of size O(|V |) and use a parallel
scatter to create the frontier from the bitmap. Note that the
edge weights in the input graph also require O(|E|) in storage
since we compress the graph structure but not the weights.
Hence, SSSP gets in the out-of-core regime much before BFS.
Compressing weights is outside the scope of this work. In
PageRank, all the nodes are active in each iteration, and we do
not need a frontier (i.e., the frontier comprises all the nodes).
The PageRank value of a destination is updated atomically
once the edge is decoded.

VII. RELATED WORK

The literature on graph compression methods is vast [7].
Perhaps the most widely-used method for compressing large
web-graphs is BV [23]. BV exploits locality within lists and
similarity across lists. The gaps between neighbours are coded
with a variable length code and reference chains are used
for capturing the similarity between different lists. Due to
sequential dependencies, it is diffult to adapt BV for GPUs.
Graph reordering methods such as LLP [24], Shingle [25], and
BP [26], reorder the graph to reduce gaps between node labels
as smaller gaps take fewer bits to encode. LogGraph [27]
and Ligra+ [28] focus on the decompression performance
in the parallel CPU setting. Ligra+ uses run length encoded
byte/nibble codes for compression. The current state of the art
for GPU based traversals on compressed graphs is CGR by
Mo Sha et al. [8]. The compression scheme breaks lists into
intervals and residuals, followed by gap transformation, and
gaps are encoded with a variable length code.

We compare our proposed EFG representation with CGR
and Ligra+. Ligra+ uses a direction optimising implementation
by default, which can switch between top-down and bottom-
up flows in the application. However, this requires storing
in-edges in addition to out-edges, which doubles the storage

1.55
1.59

1.65

0
1
2
3
4
5
6
7
8

Graph Compression Ratio

EFG (this work) Ligra+ (TD) CGR

Social Others Web

Fig. 8. Compression ratio for EFG (this work), Ligra+(TD) [28], and CGR [8]

requirements for directed graphs. To maintain parity across
implementations, we use Ligra+ in the top-down (TD) mode.

VIII. RESULTS

We evaluate CSR, EFG, Ligra+(TD), and CGR graph rep-
resentations in a number of experiments. We use cugraph [1],
[10] for CSR graphs on the GPU and the reference imple-
mentations by the authors for for CGR [8] and Ligra+ [28].
The majority of experiments are performed on a Titan Xp
GPU (250W TDP) with 12 GiB memory while we also scale
some experiments to a V100 GPU with 32 GiB memory. CPU
measurements for Ligra+(TD) are performed on a sytem with
2x E5-2696 processors (44 cores, 88 threads, 2x145W TDP).
We choose 100 random starting nodes for BFS and SSSP and
average the results. Edge weights are initialised to random
floating point values between 0 and 1 for SSSP. PageRank runs
are capped at 50 iterations. We modified cugraph to support
out-of-core processing in BFS and SSSP. The forward pointer
quantum parameter k is set to k = 512 in EFG.

A. Compression Ratio

We show the compression ratio of EFG, Ligra+(TD), and
CGR relative to CSR in Fig. 8, and absolute numbers are
provided in Table II. The graphs are grouped by categories
in Fig. 8 as social, web, and other graphs. EFG achieves a
compression ratio of 1.55x over CSR, and the compression is
quite consistent across graphs. CGR shows a significant skew
in the compression ratio where it excels at web-graphs, but
in other graphs, its ratio is lower than EFG. CGR’s average
compression ratio across all graphs is 1.65x. Ligra+(TD)
achieves an overall compression ratio of 1.59x with similar
trends as CGR in that it is better at web-graphs than other
types of graphs. Overall, EFG achieves the best compression in
social and other graphs whereas CGR is best with web-graphs.
The reason for the disparity in web-graphs is two fold: i) Web-
graphs have strong locality where long runs of contiguous
values are common. The interval and residual representation
in CGR and the run length encoded version of gaps in
Ligra+ lends itself well to this structure. ii) EF encoding has
limitations in compressing such sequences, and solutions [29]
that address it exist, although they were not incorporated here.
We discuss them in Sec. IX. Lower compression in web-graphs

TABLE II
BFS PERFORMANCE ON TITAN XP AND 2X E5-2696 V4

Graph |V |(|E|)
Size in GiB (Runtime in ms)

GPU CPU

CSR [10] CGR [8] EFG Lg+TD [28]

soc-lj (d) 4.85 M (68.9 M) 0.28 (8) 0.19 (22) 0.18 (11) 0.21 (77)
soc-lj sym (u) 4.85 M (86.22 M) 0.34 (10) 0.22 (28) 0.21 (14) 0.24 (90)
orkut (u) 3.07 M (234.3 M) 0.88 (13) 0.5 (45) 0.47 (28) 0.5 (140)
urnd 26 (d) 67.1 M (1.07 B) 4.25 (525) 4.72 (1277) 3.4 (467) 3.92 (1523)
twitter (d) 41.6 M (1.47 B) 5.63 (234) 4.23 (425) 3.33 (238) 3.77 (1589)
web-cc-fl (d) 80.76 M (1.77 B) 6.92 (249) 5.48 (493) 4.76 (272) 5.13 (2193)
gsh-15-h (d) 68.66 M (1.8 B) 6.97 (160) 3.3 (385) 4.73 (174) 3.74 (1007)
sk-05 (d) 65.61 M (1.95 B) 7.45 (57) 1.53 (190) 5.02 (115) 2.89 (533)
web-cc-host (d) 89.11 M (2.03 B) 7.93 (303) 6.36 (603) 5.52 (328) 5.92 (2530)
kron 27 (d) 63.07 M (2.12 B) 8.15 (511) 7.01 (962) 5.18 (494) 6.07 (1900)
urnd 26 sym (u) 67.1 M (2.14 B) 8.25 (793) 8.59 (1610) 6.39 (758) 6.93 (2445)
twitter sym (u) 41.6 M (2.40 B) 9.11 (348) 6.61 (906) 5.34 (368) 5.89 (3379)

gsh-15-h sym (u) 68.66 M (3.05 B) 11.62 (1824) 4.94 (776) 7.33 (361) 5.77 (2198)
web-cc-fl sym (u) 80.76 M (3.39 B) 12.92 (2140) 9.48 (1360) 8.17 (713) 8.84 (7589)
com-frndster (u) 65.61 M (3.61 B) 13.7 (2387) 11.98 (DNR) 9.15 (1006) 10.54 (4082)
sk-05 sym (u) 65.61 M (3.64 B) 13.75 (2062) 1.93 (1098) 7.9 (323) 4.58 (1326)
uk-07-05 (d) 105.22 M (3.74 B) 14.32 (1444) 4.3 (648) 10.31 (212) 5.97 (1009)
web-cc-h sym (u) 89.11 M (3.87 B) 14.76 (2441) 10.89 (1519) 9.37 (842) 10.11 (7306)
kron 27 sym (u) 63.07 M (4.22 B) 15.97 (2600) 12.61 (DNR) 9.23 (997) 10.87 (4128)

moliere-16 (u) 30.22 M (6.68 B) 25.1 (4149) 18.65 (DNR) 14.5 (2148) 16.82 (5138)

notwithstanding, EFG has other benefits. EFG’s runtime for
traversals is lower than CGR and Ligra+(TD) in all cases.
It is also inexpensive to estimate EFG’s storage requirements
since the upper bound on storage in EF only depends on the
number of elements and the largest value (Sec. IV) in each
list. That is, we do not need to compress the graph to know
how well it will compress with EFG.

B. BFS Performance

We first look at the relative performance of BFS for CSR,
CGR and EFG representations on a Titan Xp GPU in Fig. 9
and Table II. As noted in Sec. II, the set of graphs break
down into three categories. The first set of small graphs fit in
memory even in the CSR representation, and here cugraph’s
CSR implementation performs the best on average. EFG
achieves 0.82x of this performance. Note that this is still 2.1x
faster than CGR. Unless one wishes to save memory for other
uses, there is little reason to use compressed representations
when the graphs fit in memory. The next set of graphs exceeds
the memory capacity in the CSR representation. We can see
that EFG performs the best here as all the graphs fit in
memory after compression. EFG has an average speedup of
3.8x (max 6.8x) over the out-of-core CSR implementation and
a 2x speedup over CGR in this region. Notice that EFG’s
runtime is lower that CGR in all cases, including web-graphs.
For example, EFG’s runtime is 3.4x lower than CGR (323
ms v/s 1098 ms) for sk-2005_sym. The last graph in the
set takes more than 12 GiB in storage even after compression
with EFG. However, compression is still beneficial here since
it reduces the volume of data transferred over the interconnect.
EFG sees a speedup of 1.8x over CSR here. Since CGR does
not support out-of-core processing, experiments where CGR is
unable to process graphs are marked as ’did not run’ (DNR).

Next, we look at Ligra+(TD)’s performance on the CPU in
Table II. For the first set of graphs that fit in GPU memory,
cugraph’s CSR implementation is faster by 6.7x on average
than Ligra+(TD) and our EFG implementation is faster by

0.41
0.82

0

0.2

0.4

0.6

0.8

1

1.2

S
p

ee
d

u
p

CSR CGR EFG

1.9

3.82

0
1
2
3
4
5
6
7
8

S
p

ee
d

u
p

CSR CGR EFG

0

0.5

1

1.5

2

2.5

S
p

ee
d

u
p

CSR CGR EFG

BFS Performance on Titan Xp

(a) Graphs that fit in memory (b) Large graphs

D
N

R

D
N

R

(c) Massive graphs

D
N

R

Fig. 9. BFS performance relative to CSR (higher is better) on a Titan Xp GPU with 12 GiB memory

0

1

2

3

4

5

G
T

E
P

S

SSSP Performance on Titan Xp

CSR EFG

D
N

R

1 2 3 4 5

Fig. 10. SSSP performance measured in GTEPS. Regions: (1) CSR & EFG
graphs fit in memory. (2) EFG fits entirely but CSR’s weights do not fit. (3)
Weights do not fit in either format. (4) Neither edges nor weights fit for CSR;
weights do not fit for EFG. (4) EFG’s edges and weights do not fit.

0

2

4

6

8

G
T

E
P

S

CSR EFG

0

5

10

15

G
T

E
P

S

EFG

PageRank Performance on Titan Xp

(b) Larger Graphs(a) Small Graphs

Fig. 11. PageRank performance measured in GTEPS

5.5x. However, as we get to larger graphs, the gap between the
GPU based CSR implementation and CPU based Ligra+(TD)
shrinks to 1.4x in the second set of graphs. This is due
to the limited bandwidth of the PCIe interconnect for the
out-of-core GPU implementation. At the same time, EFG
maintains a speedup of 5.6x over Ligra+(TD) in this region
since the graphs fit in GPU memory after compression. Since
the last graph exceeds 12 GiB even with EFG compression,
the speedup over Ligra+(TD) reduces to 2.3x.

C. SSSP and PageRank Performance

We show the performance of SSSP and PageRank on the
Titan Xp GPU in Figs. 10 and 11, respectively. CGR is not
evaluated here as an implementation was not available. Since
SSSP requires an additional edge weights array, only small
graphs fit entirely in memory. Nevertheless, compression is

beneficial as one can fit the graph structure and stream the
weights. CSR graphs fit entirely in memory in region 1 in
Fig. 10, and EFG graphs fit entirely in regions 1 and 2. In
region 3, the weights are streamed in for both the formats.
In region 4, EFG continues to stream the weights, whereas
CSR has to stream both the weights and edges. In region 5,
we exceed the memory capacity even for edges in the EFG
format. In regions 2 and 4, where EFG has the advantage over
CSR due to more data fitting in memory, we see speedups of
1.41x and 1.85x respectively. The performance is quite similar
in region 3 as both CSR and EFG need to stream weights,
which is the bottleneck. PageRank’s performance (Fig. 11)
shows a similar trend as BFS in that cugraph’s in-memory
implementation for CSR performs better than EFG. PageRank
is not evaluated for CSR for large graphs since an out-of-core
version was not available.

D. Graph Reordering

Graph reordering is a common preprocessing technique
that is used for different purposes. In the context of graph
compression, reordering methods relabel the nodes to reduce
gaps between successive neighbours since smaller gaps can
be encoded more efficiently. Graph reordering can also be
used to improve locality and performance. We use two graph
reordering methods - BP [26] that optimises for lower gaps,
and HALO [5] that optimises for locality, and evaluate their
impact on different compressed graph representations. We also
evaluate random ordering as a pathological case since random
ordering destroys all locality. The impact of different orderings
on compression ratio and BFS’ runtime performance on the
Titan Xp GPU is shown in Fig. 12. The main observations are
as follows:

Compression Ratio: EFG does not use a gap-based encod-
ing. Hence, it is not affected by the distribution of gaps and its
compression ratio is virtually unchanged for all the ordering
methods (Fig. 12(a)). Note that random ordering does not
negatively impact the compression ratio. The storage bounds
for EF only depend on the largest value in a list and the number
of elements. On the other hand, CGR and Ligra+(TD) benefit
from lower gaps (9-15% improvement), and their compression
ratio deteriorates in random ordering (18-32% deterioration)

0.68
1.1

1.15

0

0.5

1

1.5

2

(b) CGR Compression Ratio relative to Natural Ordering

Random HALO-II BP

0.99

1.03
1.01

0.9

0.95

1

1.05

1.1

(a) EFG Compression Ratio relative to Natural Ordering

Random HALO-II BP

0.82

1.09
1.06

0

0.5

1

1.5

(c) Lg+TD Compression Ratio relative to Natural Ordering

Random HALO-II BP

0.73
1.36

1.33

0
0.5

1
1.5

2
2.5

3

(d) EFG BFS Speedup relative to Natural Ordering

Random HALO-II BP

0.82

1.23
1.34

0
0.5

1
1.5

2
2.5

3
3.5

(e) CGR BFS Speedup relative to Natural Ordering

Random HALO-II BP

0.81
1.29

1.27

0
0.5

1
1.5

2
2.5

3

(f) Lg+TD BFS Speedup relative to Natural Ordering

Random HALO-II BP

Fig. 12. Impact of graph reordering on compression ratio and BFS performance

(Figs. 12(b,c)). For example, sk-05’s compression drops to
0.2x-0.5x with random ordering, whereas wh_sym’s com-
pression improves by 1.3x-1.7x with BP for these encoding
schemes.

BFS Performance: All the representations benefit from
improved locality and are impacted negatively by random
ordering (Figs. 12(d,e,f)). This is expected as the ordering
affects the memory access pattern irrespective of whether a
graph is compressed or not. The runtime performance of BFS
on a GPU depends on factors such as memory coalescing, read
amplification, the prefetcher’s effectiveness, etc., and locality
friendly orderings improve these characteristics while random
ordering hurts them. HALO improves performance by 1.26x-
1.32x on average, and random ordering reduces the perfor-
mance to 0.65x-0.8x across different graph representations.

E. Scaling to Larger GPUs

We also confirmed the main experimental trends on a newer
V100 GPU with 32 GiB HBM memory that supports internal
bandwidth of 731.3 GiB/s. The V100 GPU is still connected to
the host with a PCIe 3.0 link that supports peak bandwidth of
12.1 GiB/s. The difference between the internal and external
bandwidth is even greater here, and we expect compression to
be more beneficial in such cases. In Table III, we show the
BFS performance metrics for some of the larger graphs for
CSR, EFG, and CGR representations. EFG achieves 0.67x of
CSR’s performance when CSR graphs fit in memory, and it
shows a speedup of 6.55x when CSR graphs do not fit. The

TABLE III
BFS RUNTIME ON A V100 GPU (32 GIB MEMORY)

Graph |V |(|E|) Size in GiB (Runtime in ms)

CSR [10] CGR [8] EFG

com-frndster (u) 65.61 M (3.61 B) 13.7 (316) 11.98 (389) 9.15 (349)
sk-05 sym (u) 65.61 M (3.64 B) 13.75 (77) 1.93 (735) 7.9 (153)
uk-07-05 (d) 105.22 M (3.74 B) 14.32 (68) 4.3 (169) 10.31 (117)
web-cc-h sym (u) 89.11 M (3.87 B) 14.76 (273) 10.89 (445) 9.37 (340)
kron 27 sym (u) 63.07 M (4.22 B) 15.97 (325) 12.61 (426) 9.23 (370)
moliere-16 (u) 30.22 M (6.68 B) 25.1 (189) 18.65 (341) 14.5 (296)

kron 28 sym (u) 121.23 M (8.47 B) 32.46 (7319) 26.43 (1170) 19.64 (1012)
kron 29 (d) 232.99 M (8.53 B) 33.52 (6178) 30.46 (DNR) 22.95 (1043)

speedup is higher due to the greater disparity between internal
and external bandwidth (∼60x in V100 v/s ∼35x in TitanXp).
EFG also shows a speedup of 1.48x over CGR.

F. Compression Time

Since compression is an offline step for static graphs,
optimising the compression performance was not a priority in
this work. Nevertheless, compressing graphs with EF is quite
efficient, and we were able to compress all the graphs in this
work with EFG in a few minutes on the 2x E5-2696 v4 server.
Ligra+ also took about the same time for compression whereas
CGR took more than 30-45 minutes for several graphs.

IX. LIMITATIONS AND DISCUSSION

The EF encoding scheme works well when the distribution
of values being compressed is random. However, in cases like

web-graphs, we typically have long runs of contiguous values.
This is a good case for gap based encoding schemes, but
EF does not benefit from smaller gaps. To use a motivating
example [29], consider a sequence S = [0, 1, 2, ..., n−2, u−1]
of length n where the first n−1 values are contiguous. This is a
highly compressible sequence where the length of the run and
the last value are sufficient to describe S. On the other hand,
EF still uses 2+dlog u/ne bits to encode each element, which
is the same as any random sequence. The general approach
to deal with this problem is to partition the sequence so that
some partitions can be encoded more efficiently (e.g., with run-
length coding). In PEF [29], the authors propose a method for
selecting partition sizes in this model. We did not incorporate
this here, but extensions to the EFG format are possible. The
work described here can also be used in conjunction with
methods such as virtual node compression [30] and other
distributed or out-of-core solutions.

X. CONCLUSION

Since real-world graphs are typically larger than a GPU’s
memory capacity, a variety of solutions can be used to address
the challenges involved in graph analytics on GPUs. In this
work, we looked at graph compression as a means to accom-
modate large graphs in GPU memory. Traditional graph com-
pression schemes, while effective in compressing the graphs,
cannot be used easily on GPUs due to the sequential and
dependent nature of the decompression phase. We proposed
the Elias Fano Graph (EFG) representation as a GPU-friendly
compressed graph representation that encompasses several
desirable properties in terms of compression ratio and the
decompression performance. The seemingly irregular problem
of decompression can be broken down into common high
performance primitives such as parallel scans and searches,
which results in an efficient and load-balanced implementation
for graph traversals. We showed that we can compress several
large graphs by a factor of 1.5x and outperform out-of-core
approaches in traversal runtime by a factor of 3.8x-6.5x. Our
implementation is also 1.45x-2x faster than the current state of
the art in GPU based compressed graph traversals. The code
for this work is published at https://github.com/pgera/efg.

REFERENCES

[1] M. Bisson, M. Bernaschi, and E. Mastrostefano, “Parallel distributed
breadth first search on the kepler architecture,” IEEE Transactions on
Parallel and Distributed Systems, vol. 27, no. 7, pp. 2091–2102, 2015.

[2] Y. Pan, Y. Wang, Y. Wu, C. Yang, and J. D. Owens, “Multi-gpu
graph analytics,” in 2017 IEEE International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2017, pp. 479–490.

[3] A. Gharaibeh, T. Reza, E. Santos-Neto, L. B. Costa, S. Sallinen, and
M. Ripeanu, “Efficient large-scale graph processing on hybrid cpu and
gpu systems,” arXiv preprint arXiv:1312.3018, 2013.

[4] S. W. Min, V. S. Mailthody, Z. Qureshi, J. Xiong, E. Ebrahimi, and W.-
m. Hwu, “Emogi: Efficient memory-access for out-of-memory graph-
traversal in gpus,” Proceedings of the VLDB Endowment, vol. 14, no. 2,
pp. 114–127, 2021.

[5] P. Gera, H. Kim, P. Sao, H. Kim, and D. Bader, “Traversing large graphs
on gpus with unified memory,” Proceedings of the VLDB Endowment,
vol. 13, no. 7, pp. 1119–1133, 2020.

[6] A. H. N. Sabet, Z. Zhao, and R. Gupta, “Subway: minimizing data
transfer during out-of-gpu-memory graph processing,” in Proceedings
of the Fifteenth European Conference on Computer Systems, 2020.

[7] M. Besta and T. Hoefler, “Survey and taxonomy of lossless graph
compression and space-efficient graph representations,” arXiv preprint
arXiv:1806.01799, 2018.

[8] M. Sha, Y. Li, and K.-L. Tan, “Gpu-based graph traversal on compressed
graphs,” in Proceedings of the 2019 International Conference on Man-
agement of Data, 2019, pp. 775–792.

[9] D. Merrill, M. Garland, and A. Grimshaw, “High-performance and
scalable gpu graph traversal,” ACM Transactions on Parallel Computing
(TOPC), vol. 1, no. 2, pp. 1–30, 2015.

[10] “cugraph - rapids graph analytics library,” https://github.com/rapidsai/
cugraph, (Accessed on 10/02/2020).

[11] P. Boldi and S. Vigna, “The WebGraph Framework I: Compression
Techniques,” in Proc. of the Thirteenth International World Wide Web
Conference (WWW 2004), 2004.

[12] P. Boldi, A. Marino, M. Santini, and S. Vigna, “Bubing: Massive
crawling for the masses,” ACM Transactions on the Web (TWEB),
vol. 12, no. 2, pp. 1–26, 2018.

[13] R. Meusel, S. Vigna, O. Lehmberg, and C. Bizer, “Graph structure in the
web—revisited: a trick of the heavy tail,” in WWW Companion, 2014,
pp. 427–432.

[14] J. Leskovec and A. Krevl, “SNAP Datasets: Stanford Large Network
Dataset Collection,” http://snap.stanford.edu/data, Jun. 2014.

[15] J. Sybrandt, M. Shtutman, and I. Safro, “MOLIERE: Automatic Biomed-
ical Hypothesis Generation System,” in Proceedings of the 23rd ACM
SIGKDD International Conference on Knowledge Discovery and Data
Mining, ser. KDD ’17, 2017.

[16] S. Beamer, K. Asanović, and D. Patterson, “The gap benchmark suite,”
arXiv preprint arXiv:1508.03619, 2015.

[17] D. Culler, J. P. Singh, and A. Gupta, Parallel computer architecture: a
hardware/software approach. Gulf Professional Publishing, 1999.

[18] P. Elias, “Efficient storage and retrieval by content and address of static
files,” Journal of the ACM (JACM), vol. 21, no. 2, pp. 246–260, 1974.

[19] S. Vigna, “Quasi-succinct indices,” in Proceedings of the sixth ACM
international conference on Web search and data mining. ACM, 2013,
pp. 83–92.

[20] ——, “Broadword implementation of rank/select queries,” in Interna-
tional Workshop on Experimental and Efficient Algorithms. Springer,
2008, pp. 154–168.

[21] “Folly: An open-source c++ library developed and used at facebook.”
https://github.com/facebook/folly, (Accessed on 08/04/2020).

[22] D. Merrill, “Cub,” NVIDIA Research, 2015.
[23] P. Boldi and S. Vigna, “The webgraph framework i: compression

techniques,” in Proceedings of the 13th international conference on
World Wide Web, 2004, pp. 595–602.

[24] P. Boldi, M. Rosa, M. Santini, and S. Vigna, “Layered label propaga-
tion: A multiresolution coordinate-free ordering for compressing social
networks,” in Proceedings of the 20th international conference on World
Wide Web, 2011, pp. 587–596.

[25] F. Chierichetti, R. Kumar, S. Lattanzi, M. Mitzenmacher, A. Panconesi,
and P. Raghavan, “On compressing social networks,” in Proceedings
of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, 2009, pp. 219–228.

[26] L. Dhulipala, I. Kabiljo, B. Karrer, G. Ottaviano, S. Pupyrev, and
A. Shalita, “Compressing graphs and indexes with recursive graph
bisection,” in Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, 2016, pp. 1535–
1544.

[27] M. Besta, D. Stanojevic, T. Zivic, J. Singh, M. Hoerold, and T. Hoefler,
“Log (graph) a near-optimal high-performance graph representation,” in
Proceedings of the 27th International Conference on Parallel Architec-
tures and Compilation Techniques, 2018, pp. 1–13.

[28] J. Shun, L. Dhulipala, and G. E. Blelloch, “Smaller and faster: Parallel
processing of compressed graphs with ligra+,” in 2015 Data Compres-
sion Conference. IEEE, 2015, pp. 403–412.

[29] G. Ottaviano and R. Venturini, “Partitioned elias-fano indexes,” in Pro-
ceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval, 2014, pp. 273–282.

[30] G. Buehrer and K. Chellapilla, “A scalable pattern mining approach to
web graph compression with communities,” in Proceedings of the 2008
International Conference on Web Search and Data Mining, 2008, pp.
95–106.

https://github.com/pgera/efg
https://github.com/rapidsai/cugraph
https://github.com/rapidsai/cugraph
http://snap.stanford.edu/data
https://github.com/facebook/folly

	Introduction
	Motivation
	Background
	GPU Architecture
	Graph Analytics on a GPU
	Scans and Searches
	Compressed Sparse Row (CSR) Format

	Elias-Fano Encoding
	Decoding

	Elias-Fano Graph (EFG) Format
	Compressed Graph Traversal
	Load Balanced Partitioning
	Decompressing A Single List
	Decompressing A Partial List
	Decompressing Multiple Lists
	Partially Sorting the Frontier
	SSSP and PageRank

	Related Work
	Results
	Compression Ratio
	BFS Performance
	SSSP and PageRank Performance
	Graph Reordering
	Scaling to Larger GPUs
	Compression Time

	Limitations and Discussion
	Conclusion
	References

